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Abstract

Modeling mechanical joints in an accurate and computationally efficient manner is of great importance in the analysis of

structural systems, which can be composed of a large number of connected components. This work presents an interface

model that can be decomposed into a series-series Iwan model together with an elastic chain, subject to interfacial shear

loads. A reduced-order formulation of the resulting model is developed that significantly reduces the computational

requirements for the simulation of frictional damping. Results are presented as the interface is subject to harmonic loading

of varying amplitude. The models presented are able to qualitatively reproduce experimentally observed dissipation

scalings. Finally, the interface models are embedded within a larger structural system to illustrate there effectiveness in

capturing the structural damping induced by mechanical joints.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Complex engineering structures are often composed of a multitude of components, connected by
mechanical joints and interfaces, which are often give rise to a significant fraction of the overall dissipation
observed in the response. This damping is associated with interfacial frictional slip, known as microslip, and is
strongly amplitude dependent and hence nonlinear [1–3]. Predictive structural models therefore require an
accurate representation of the behavior at and near the interface, giving rise to the experimentally observed
nonlinear stiffness and damping characteristics.

The most direct method to represent microslip in a larger structural model is to resolve the interface in a
finite element model [4]. Unfortunately, the small length scales required to capture the mechanics of microslip
lead to a problem for which the time required to generate a computational solution is prohibitively long [5].
Thus, one is led to search for alternative representations of the dissipation induced by mechanical interfaces
with larger structural models. One common technique is to incorporate the observed dissipation into a linear
joint model with effective mass, damping and stiffness parameters, which must then be estimated to match
experimentally observed results. However, the identified parameters are thus tied to the response of a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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particular test. As the forcing levels vary the identified parameters can change significantly because of the
nonlinear nature of the interface dissipation—the joint model is no longer predictive.

The role of friction and microslip has been incorporated into several nonlinear reduced-order models for the
joint based on descriptions of the slip interface in the joint. Menq, Bielak, and Griffin [6] develop a continuum
model representing the microslip that arises in frictional dampers. Quinn and Segalman [7] consider a similar
model and show that by varying the spatial distribution of the frictional intensity the predicted dissipation is
representative of experimentally observed scalings. Discrete models of the interface are often based on
combinations of spring-slider elements, as considered by Iwan [8,9]. Sengalman [10] has developed a four
parameter Iwan model that is capable of reproducing the qualitative properties of the joint dynamics.
Meanwhile, Song, Hartwigsen, McFarland, Vakakis, and Bergman [11] have developed an adjusted Iwan
beam element based on a parallel-series Iwan model that can be naturally incorporated into an existing finite
element framework. With the proper identification of the model parameters, the adjusted Iwan beam element
can be used to capture experimentally observed profiles for the response of jointed structures.

The present work considers a two-sided interface model based on a series-series Iwan model in which the
parameters are physically motivated [7]. The model is shown to naturally decompose into an elastic and
dissipative component that decouple for time-dependent external forces applied to the joint. This interface
model is then incorporated into a larger structural model, following the approach taken in Song, Hartwigsen,
McFarland, Vakakis, and Bergman [11]. Once embedded in the structural model the elastic and dissipative
components of the joint model couple together through the forces acting on the interface. Finally, this joint
model is shown to qualitatively reproduce response features of jointed structures observed experimentally.

2. A two-sided interface model

To begin consider a single series of Iwan elements, made up of n interfaces and 2ðn� 1Þ masses as shown in
Fig. 1. In this model each element is assumed to be identical, with a mass m, and a stiffness k, respectively. The
forces f i and gi, i ¼ 1; . . . ; n� 1 represent the shear loading applied to the masses in the ith component, while
f 0 and g0 (f n and gn) describe the forces acting on the left (right) edge of the interface. In addition, each
interface is described through the frictional force si. For this system the equations of motion can be written as

m €xi þ 2kxi � kðui þ uiþ1Þ ¼ f i; upper masses, (1a)

m €yi þ 2kyi � kðvi þ viþ1Þ ¼ gi; lower masses, (1b)
i+1

Fig. 1. Discrete model.
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s1 þ kðx1 � u1Þ þ f 0 ¼ 0;

�s1 þ kðy1 � v1Þ þ g0 ¼ 0;
1st slider, (1c)

si þ kðxi�1 � 2ui þ xiÞ ¼ 0;

�si þ kðyi�1 � 2vi þ yiÞ ¼ 0;
ith slider, (1d)

sn þ kðxn�1 � unÞ þ f n ¼ 0;

�sn þ kðyn�1 � vnÞ þ gn ¼ 0;
nth slider. (1e)

This two-sided interface problem, in which deformation can arise on either side, is an extension of the study by
Pratt and Williams [12] on the steady-state relative motion of two masses with Coulomb friction acting
between them. Note that if the interface is characterized by Coulomb friction, then si ¼ �mi �Ni sgnð _u1 � _v1Þ,
where mi and Ni are the coefficient of friction and the normal load acting on the ith interface, respectively, and
we refer to the product mi �Ni as the frictional intensity. From these equations, and the symmetry of the
system, the following coordinates can be identified

wi ¼
xi þ yi

2
; zi ¼

xi � yi

2
,

pi ¼
ui þ vi

2
; qi ¼

ui � vi

2
, (2)

where ðwi; ziÞ and ðpi; qiÞ represent the average and relative displacements across the masses and sliders,
respectively. With these, the equations describing the evolution of wi decouple from those on zi to yield

m €wi þ 2kwi � kðpi þ piþ1Þ ¼
f i þ gi

2
, (3a)

2kðw1 � p1Þ þ ðf 0 þ g0Þ ¼ 0, (3b)

ðwi�1 � 2 pi þ wiÞ ¼ 0, (3c)

2kðwn�1 � pnÞ þ ðf n þ gnÞ ¼ 0, (3d)

m€zi þ 2kzi � kðqi þ qiþ1Þ ¼
f i � gi

2
, (4a)

2s1 þ 2kðz1 � q1Þ þ ðf 0 � g0Þ ¼ 0, (4b)

si þ kðzi�1 � 2qi þ ziÞ ¼ 0, (4c)

2sn þ 2kðzn�1 � qnÞ þ ðf n � gnÞ ¼ 0. (4d)

In the above equations on wi and pi, the interface forces si are absent and the response of this set is
independent of the interface. Solving for pi yields

p1 ¼ w1 þ
f 0 þ g0

2k
, (5a)

pi ¼
wi�1 þ wi

2
, (5b)

pn ¼ wn�1 þ
f n þ gn

2k
. (5c)

These can then be returned to the equations for €wi to yield

m €w1 þ
k

2
ðw1 � w2Þ ¼

f 0 þ g0

2

� �
þ

f 1 þ g1

2

� �
, (6a)
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m €wi þ
k

2
ð�wi�1 þ 2wi � wiþ1Þ ¼

f i þ g1

2

� �
; i ¼ 2; . . . ; n� 2, (6b)

m €wn�1 þ
k

2
ð�wn�2 þ wn�1Þ ¼

f n�1 þ gn�1

2

� �
þ

f n þ gn

2

� �
. (6c)

Therefore these equations are equivalent to those describing the response of an elastic chain, as represented
in Fig. 2.

The response described by wi is conservative, so that the dissipation in the system arises solely from the
equations on zi, for which the equations of motion can be written as

m€zi þ kððzi � qiÞ þ ðzi � qiþ1ÞÞ ¼
f i � gi

2
, (7)

with

s1 ¼ �
f 0 � g0

2

� �
� kðz1 � q1Þ, (8a)

si ¼ �kððzi�1 � qiÞ þ ðzi � qiÞÞ; i ¼ 2; . . . ; n� 1, (8b)

sn ¼ �
f n � gn

2

� �
� kðzn�1 � qnÞ. (8c)

Therefore, these equations represent the dissipative structure shown in Fig. 3, a series-series Iwan system [7].
Notice that the interface forces si do not rely on any specific model for friction, such as Coulomb friction. In
addition, these forces need be neither uniform in space nor constant in time. Thus, the decoupling that arises
from the coordinate transformation identified above can be achieved for any interfacial friction model.
However, in the numerical results that follow, we do assume that interfacial friction is modeled by Coulomb
friction, with a constant uniform frictional intensity.

For this component, the dissipative power can be determined as

Pd ðtÞ ¼
Xn

i¼1

siðtÞ � _qiðtÞ, (9)

so that the work done by the dissipative component, and therefore the total interface model, becomes

�DðtÞ ¼

Z t

0

Xn

i¼1

siðtÞ � _qiðtÞdt. (10)
Fig. 2. Elastic component.

Fig. 3. Dissipative component.
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In Quinn and Sengalman [7] a spatially nonuniform frictional intensity is considered and is shown to yield
measures for the dissipation that are consistent with experimental data.
3. Model reduction

3.1. Characteristic scales

While the proposed interface model described above is able to represent states of partial slip, its explicit
numerical solution is nonetheless restricted by prohibitively small time steps. The characteristic time and
length scales of the above interface model serve to guide the model reduction.

To compare interface models of varying size, we scale the inter-element stiffness and mass by the overall
static stiffness and total mass of the elastic chain, Keq and Meq, so that

k ¼ ðn� 1ÞKeq; m ¼
Meq

2ðn� 1Þ
. (11)

The lowest characteristic frequency of the interface scales as oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Keq=Meq

p
, so that the largest characteristic

frequency scales is

omax ¼

ffiffiffiffiffiffi
2k

m

r
¼ 2ðn� 1Þ

ffiffiffiffiffiffiffiffiffi
Keq

Meq

s
¼ 2ðn� 1Þoc. (12)

Thus, oc describes the characteristic frequency of the interface. If the computational time scale of a larger
structural model is also assumed to be characterized by oc, the computational time scale with the inclusion of
this joint model must be decreased by a factor of n to capture the largest characteristic frequency of the above
model. Therefore the inclusion of this chain within larger structural models to represent frictional interfaces
remains computationally inefficient. However, based on the decomposition described above, we propose a
model reduction strategy based on modal analysis of the elastic chain and a quasi-static treatment of the
dissipative component.

A characteristic force for this interface, defined as Fc, can be identified as a frictional intensity associated
with the total interface. For example, if the frictional intensity is constant in time, a natural choice for F c can
be chosen as Fc ¼

Pn
i¼1si. For time-dependent frictional intensities, a time average of the total intensity is

appropriate. With this, a characteristic length scale of the interface can be identified as

Lc ¼
Fc

Keq
, (13)

which is associated with the displacement of the joint at the onset of macroslip. These characteristic values, oc,
Fc, and Lc, can be used as reference values for the response of the interface, so that scaled values of the
response can be defined as, for example

t% ¼ oct; x% ¼
xðtÞ

Lc

; f %
¼

f

F c

. (14)

In general, the ð�Þ% notation indicates the appropriate scaled variables. With the scaled frictional intensity
defined as s%

i ðt
%Þ ¼ siðt

%=ocÞ=Fc, the scaled dissipation can be defined as

�D%ðt%Þ ¼

Z t%

0

Xn

i¼1

s%

i ðtÞ �
dq%

i

dt
ðtÞdt�!DðtÞ ¼ ðFcLcÞD

%ðoctÞ. (15)

The model reduction that follows will make use of the characteristic scales identified above, but will be carried
out in terms of the original dimensional variables to facilitate the incorporation of this interface model within
larger structural systems. However, when isolating the response of the interface alone, the results will be
presented relative to these characteristic scales, i.e., in terms of the scaled nondimensional (starred) variables.
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3.2. Elastic chain

The response of the elastic chain can be approximated with a Galerkin analysis using only the linear
vibrational modes of the chain whose characteristic times are comparable to the time scales of the surrounding
structure. In the forced response of the elastic chain the number of modes required to describe the response of
the component depends on the characteristic time scale of the forcing—longer time scales require, in general,
fewer modes for accurate description.

Retaining only the lowest s linear modes for the elastic chain, denoted as /i, i ¼ 1; . . . ; s, the response of this
component is then given as

wiðtÞ ¼
Xs

j¼1

W jðtÞ½/j�i, (16)

where the modal amplitudes W jðtÞ are approximated by a reduced-order model of the form

M̂ €Wþ K̂W ¼ f̂ðtÞ, (17)

with

M̂jk ¼ /T
j M/k; K̂ jk ¼ /T

j K/k; f̂ ðtÞj ¼ /T
j fðtÞ. (18)

3.3. Dissipative chain

In the series-series Iwan chain, the dissipation can be accurately captured by neglecting the mass in each
Iwan element, again provided that the time scale of the external loading is sufficiently long—effectively solving
for the response of the system quasi-statically. Therefore, a finer mesh of dissipative Iwan elements can be used
to describe partial slip states without the computational penalty of prohibitively small time steps required for
numerical stability. With m ¼ 0 the displacement of zi is

zi ¼
f i � gi

4k
þ

qi þ qiþ1

2
, (19)

so that the equations of motion for the massless dissipative chain can be written as

kðq1 � q2Þ ¼ ðf 0 � g0Þ þ
f 1 � g1

2

� �
þ 2s1, (20a)

kð�qi�1 þ 2qi � qiþ1Þ ¼
f i�1 � gi�1

2

� �
þ

f i � gi

2

� �
þ 2si; i ¼ 2; . . . ; n� 1, (20b)

kð�qn�1 þ qnÞ ¼ ðf n � gnÞ þ
f n�1 � gn�1

2

� �
þ 2sn, (20c)

and are representative of the dissipative structure in Fig. 4, a massless series-series Iwan model. The above
equations can be written in a compact matrix form as

K � q ¼ R, (21)

and solved quasi-statically at each time step. In the same spirit of Kim and Kwak [13], Berger et al. [14], and
Cocu et al. [15], a complementarity approach was implemented to solve the matrix equations. An initial
Fig. 4. Massless dissipative component.
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assumption array on the slip state of each slider is created a priori to each time step. The slider is assumed to
be in a state of stiction, slipping right, or slipping left. Based on this assumption, the state variables describing
the elastic and dissipative systems are calculated. Depending on the assumption of slip state, either slider
displacements or frictional forces are solved for in the dissipative component of the interface. A solution array
is then formulated based on the slip state of each slider at the conclusion of the time step. If the solution and
assumption arrays agree the time step is then advanced, else the assumption array is updated according to the
solution array and the time step is repeated. This process continues until convergence. However, if the
iteration fails to converge, the magnitude of the time step is reduced and the process repeats.
3.4. Reduced-order interface model

From the solution of these two separate subsystems on wi for the elastic chain and ðzi; qiÞ for the dissipative
component, the coordinates of the original model can be determined as

xi ¼ wi þ zi; yi ¼ wi � zi,

ui ¼ pi þ qi; vi ¼ pi � qi. (22)

Note that for the massless dissipative chain zi can be determined in terms of the slider displacements.
In particular, since pi can be written in terms of the average displacement of the blocks w, the relative

displacement across the interface for both models become

D1 ¼ un � v1,

¼ ðwn�1 � w1Þ þ ðqn þ q1Þ þ
ðf n þ gnÞ � ðf 0 þ g0Þ

2k

� �
, (23)

and

D2 ¼ vn � u1,

¼ ðwn�1 � w1Þ � ðqn þ q1Þ þ
ðf n þ gnÞ � ðf 0 þ g0Þ

2k

� �
. (24)

In each expression, the first term represents the deformation of the elastic chain while the second describes
contribution from the dissipative component of the response. The final term in each expression arises from the
elasticity at each edge of the original model. As the number of interface elements increases, the stiffness
increases and this term becomes negligible.

If one is only concerned with the deformation across this element, as described by D1;2, then these models
are equivalent to a series-series Iwan model with appropriate shear loads, as studied by Quinn and Segalman
[7], combined with an elastic chain. The kinetic energy of the system is primarily contained within the elastic
chain, while the dissipation due to the interface is solely described by the series-series Iwan system. In the
development of these decoupled subsystems, the degree-of-freedom of each component is related, although in
the model reduction scheme described above the degree-of-freedom of the elastic and dissipative components
need not be related.

We consider the response and energy dissipation of this interface element relative to the characteristic scales
identified in Section 3.1. In the simulations below the frictional intensity is assumed to be spatially uniform
and constant in time, while the interface is subjected to direct time-dependent loading. Specifically, the
external forces acting on the element are chosen as

f 0ðtÞ ¼ 0; f nðtÞ ¼ F 0 sinðotÞ,

g0ðtÞ ¼ �F0 sinðotÞ; gnðtÞ ¼ 0. (25)

Relative to the characteristic force Fc, the system experiences macroslip when F%

0 � F 0=F c ¼
1
2
and recall that

as n varies the mass and stiffness scale as given in Eq. (11).
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3.4.1. Dissipative component

In the dissipative component, described by Eqs. (7) and (21), the response is governed by the propagation of
slip interfaces, transitions between intervals of opposing directions for the frictional contact force [7].
Moreover, for the series-series Iwan component, the dissipation per cycle as a function of forcing amplitude
follows a power-law scaling under general assumptions on the frictional intensity. Finally, due to the
decoupling described above, any conclusions drawn from the dissipative component also hold for the original
two-sided interface model as well, under the corresponding time-dependent external loads.

From the discrete dissipative system given by Eq. (7), the dissipation per forcing cycle is illustrated in Fig. 5
for n ¼ 40 as the forcing amplitude F%

0 varies. Here the scaled dissipation is shown when o% � o=oc ¼ p=15,
so that the excitation frequency is chosen well below the characteristic frequency of the interface oc.
Nonetheless, the computational time scale is limited by the characteristic frequency omax ¼ 2ðn� 1Þoc

imposed by the discretization. However, we expect the interface to respond almost quasi-statically to the
applied load. The large open circles describe the numerical simulations of the original model (with mass) using
the built-in numerical solver ode45 within MATLAB. The smaller filled triangles, which are almost
coincident with the original model, represent the dissipation arising from the complementarity formulation of
the dissipative chain. Finally, for comparison, the prediction from the quasi-static continuum limit, described
by Quinn and Segalman [7], is shown as the solid line and can be expressed as

D%

continuum ¼
8
3
ðF%

0 Þ
3. (26)

As expected, the dissipation follows a power-law scaling with exponent m�3 and Quinn and Segalman have
shown that this exponent varies with the spatial distribution of the normal traction, or equivalently the
frictional intensity mi [7]. The numerical simulations experience macroslip as the forcing amplitude increases
above F%

0 ¼ 0:50, and below F%

0�0:025 the system dissipates no energy due to the discrete description of the
interface. As the frictional intensity varies, the resulting dissipation per forcing cycle is shown in Fig. 6.

Thus the dissipation of the Iwan chain is well represented by the complementarity approach, in which the
mass is neglected. However, the computational effort required for the later approach is significant reduced,
compared to the formulation of the dissipative chain with mass. Fig. 7 shows the computational time required
to simulate three complete forcing cycles with o% ¼ p=15 and for a forcing amplitude of F%

0 ¼ 0:25 on each
side of the interface, which is equivalent to 50% of the load required to initiate macroslip. The computational
time required for the complementarity approach is at least an order of magnitude less than that required for
the differential formulation. As seen in Fig. 8, the dissipation per cycle D% predicted by the reduced-order
formulation converges as n increases.
D
∗

F0
∗

10–6

10–4

10–2

100

10–2 10–1 100

Fig. 5. Numerical simulations of the discrete dissipative component ðn ¼ 40;o% ¼ p=15Þ. The open circles represent original Iwan with

mass while the filled triangles describe the complementarity formulation. Finally, the solid line is the continuum prediction D% ¼ 8
3
ðF%

0 Þ
3,

based on Quinn and Segalman [7].
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indicate the original differential formulation while the triangles denote the CPU time required for the complementarity approach.
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3.4.2. Interface response

With n ¼ 40, so that there exist 40 slip locations across the interface, the total steady-state response across
the two-sided interface model, D%

1 , is shown in Fig. 9. Specifically, the response for the original differential
formulation is shown in Fig. 9a while the response of the reduced-order model is depicted in Fig. 9b. In each
panel the contribution from each component is shown, in addition to the total relative displacement across the
interface. The time interval shown corresponds to a single forcing cycle after the decay of the transient
response. While the displacement across the elastic component is smooth, as expected, the dissipative
component undergoes stick–slip dynamics. The scaled displacement is shown as a function of the scaled applied
force in Fig. 10a, exhibiting significant hysteresis per loading cycle and therefore energy dissipation. The small
amplitude fluctuations seen in the hysteresis loop arise from the high frequency modes in the elastic component.

Comparing the difference between the two formulations, the error in the total displacement between the
differential and reduced-order formulation is shown in Fig. 11 as the model size n increases. In the reduced-
order formulation s ¼ 10 modes have been retained in the elastic component. As the resolution of the interface
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Fig. 9. Numerical response across the interface to harmonic loads n ¼ 40;F%

0 ¼ 0:50;o% ¼ p=15Þ simulations of the discrete dissipative

component. In each panel the solid curve describes the total displacement across the interface D%

1 ðtÞ F, with ðq%

n þ q%
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ðw%
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1 Þ ..... : (a) differential interface and (b) reduced-order interface.
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Fig. 8. Total nondimensional dissipation per cycle D% in the reduced-order model, with increasing model size n ðF%

0 ¼ 0:25;o% ¼ p=15Þ.
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increases the reduced-order model approaches the differential formulation. Finally, the computational time
required for the numerical solution of these two formulations is illustrated in Fig. 12. The computational time
required for the original differential formulation appears to grow at a much faster rate than that of the
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reduced-order model and for n ¼ 100 requires two orders of magnitude longer to simulate. In addition to the
computational efficiency of the complementarity formulation, the modal analysis applied to the elastic chain is
significantly more efficient than the simulation of the original n-degree-of-freedom elastic chain. Again, in
these results, oc, Lc, and F c, the characteristic values of the interface, have been used to scale the response so
that the observed behavior can be interpreted as relative to these time, length, and force scales described in
Section 3.1.

4. Structural response

The ability of this interface model to represent structural damping can best be evaluated within a larger
structural system. As illustrated in Fig. 13, a frictional interface joining the two rods undergoing longitudinal
deformation is considered. In the monolithic structure (no joint), we consider the system to be represented by
an elastic chain of r discrete spring–mass elements. Here each spring and mass is assumed to be identical, with
mass M̂ ¼M=r and stiffness K̂ ¼ r K , so that the total mass of the system is M and the equivalent static
stiffness of the rod is K . Identifying the characteristic force as the total frictional intensity of the interface F c,
this system can be nondimensionalized with the characteristic frequency

ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, so that t �

ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
t, and

characteristic length F c=K .1 Note however that the characteristic scales described in Section 3.1 are distinct
from this nondimensionalization of the structure. The former is based on the interface itself while the latter is
relative to the overall structural system.

With the nondimensional displacement of the ith mass described by aiðtÞ, the nondimensional equations of
motion for the longitudinal deformation can be written as

1

r
a001 þ rð2a1 � a2Þ ¼ 0, (27a)

1

r
a00i þ rð�ai�1 þ 2ai � aiþ1Þ ¼ 0; i ¼ 2; 3; . . . ; r� 1, (27b)

1

r
a00r þ rð�ar�1 þ 2arÞ ¼ F ðtÞ, (27c)

where d=dt � ð�Þ0 and the chain is subject to the (nondimensional) external load F ðtÞ. Notice that the
monolithic structure contains no dissipative terms so that the total energy is conserved. In the presence of the
1The models for both the monolithic and jointed structures will be scaled by the same characteristic length.
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interface the ‘th mass is replaced by an Iwan interface element as described above. In this nondimensional structural
system, the frictional intensity is uniform so that mi ¼ m=n, and the overall mass and static stiffness of the interface is
Meq ¼ 1=r and Keq ¼ r (cf., Section 3.1). This procedure follows from the incorporation of an adjusted Iwan beam
element into an elastic beam by Song et al. [11]. Away from the joint, the equations governing the response of the
elements are unchanged. However, near the interface the equations governing a‘�1 and a‘þ1 become

1

r
a00‘�1 þ rða‘�1 � a‘�2Þ ¼ �g0ðtÞ, (28a)

1

r
a00‘þ1 þ rð�a‘þ2 þ a‘þ1Þ ¼ �f nðtÞ, (28b)

where g0ðtÞ and f nðtÞ represent the coupling between the Iwan interface element and the surrounding chain. These
forces are described as

g0ðtÞ ¼ 2rða‘�1 � v1Þ ¼
2r

1þ
1

n� 1

� � ða‘�1 � ðw1 � q1ÞÞ, (29a)

f nðtÞ ¼ 2rða‘þ1 � unÞ ¼
2r

1þ
1

n� 1

� � ða‘�1 � ðw1 þ qnÞÞ, (29b)

and f 0ðtÞ ¼ gnðtÞ � 0. The quantities w1, q1, wn�1, and qn represent the elastic and dissipative coordinates used
within the interface model described above, and are valid when considering either the conventional, or the massless
Iwan interface. Finally, the total dissipation in the interface DðtÞ is defined as in Eq. (10).

Thus the two-sided model can be naturally incorporated into larger structural dynamics models through the
above described procedure. In addition, with the model reduction procedure described above the
computational requirements for its solution can be significantly reduced when compared to the solution of
the original model. Recalling the discussion in Section 3.1, in this nondimensional model the characteristic
time scale of the joint is oc ¼ r, while the characteristic length scale for the joint is Lc ¼ 1=r. We note that the
response of the elastic and dissipative decomposed components are only coupled through their interaction
with the surrounding system via the forces f nðtÞ and g0ðtÞ. In the numerical simulations that follow, the linear
structure is composed of r ¼ 10 elements.

4.1. Transient response

The transient response of the structure is initiated with a modulated harmonic excitation of the form

F ðtÞ ¼
d 4

t
3T

1�
t
3T

� �h i
sin

2p
T
t

� �
; 0pto3T ;

0; tp3T ;

8><
>: (30)
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as illustrated in Fig. 14. Thus the excitation persists for three periods, with the period chosen as T ¼ 4, which
corresponds to the fundamental period of an elastic rod. In Fig. 15 the response of the monolithic rod (without
the interface) is shown when subjected to the above transient loading with zero initial conditions. In the
absence of the dissipative interface, once the excitation vanishes the energy in the free response is conserved
and the amplitude of the vibrations does not decay.

In the structure, replacing the middle element (j ¼ 6) with a differential Iwan interface as developed above,
the response of the structure slowly decays in amplitude due to energy dissipation in the interface, here
composed of n ¼ 20 slip locations. In Fig. 16 the displacement of the free end of the linear chain is shown.
Also, a uniform frictional intensity is assumed with mi ¼ 1:00=n while the amplitude of the excitation is chosen
to be d ¼ 0:25. In Fig. 16a the response is shown with the conventional interface formulation while in Fig. 16b
the response is shown with the inclusion of the reduced-order model developed above. The the reduced-order
model s ¼ 4 modes have been retained in the elastic component while the dissipative component is solved
quasi-statically. Note that these responses are almost identical.

Although both the conventional and reduced-order interface models can describe the dissipation arising
from the frictional slip, the computational requirements for these two models is significantly different. In
Fig. 17 the CPU time required for a transient simulation of 40 time units is shown for the conventional and
reduced-order interface models as the number of slip locations n and the number of retained elastic modes s

vary. This computational time is obtained directly from MATLAB using the internal variable cputime. For
comparison the CPU time for the monolithic rod is also shown. In Fig. 17a the CPU time is shown as the
number of slip locations varies, with s ¼ 4. As the order n of the interface increases, the computational time
required for the conventional interface grows significantly faster than that of the reduced-order interface
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model. For comparison the CPU time required for the simulation of the monolithic structure was 1.9
time units.

In contrast, as shown in Fig. 17b, for fixed n ¼ 50, as the number of elastic modes retained increases up to n,
the CPU time of the reduced-order model increases. In fact, due to the overhead associated with the modal
analysis of the elastic component, for sufficiently large n the computational requirements of the reduced-order
model exceed that of the conventional formulation, which is shown as the thin dashed line. However, for small
s the computational savings are significant. From this it can be concluded that the computational requirements
associated with the elastic component of the interface model, which are reduced as s decreases, serve to limit
the efficiency of the reduced-order model. However, the error induced by eliminating these higher-order modes
is minimal as illustrated by the response of the rod shown previously in Fig. 16.

The dissipation arising from the frictional interface can be characterized through the decrease in the
amplitude of the observed transient response, which from examination of Fig. 16 appears to decay
exponentially. Recall that an exponentially decaying function aðtÞ ¼ a0 expð�ZtÞ can be written as
aðtÞ ¼ expðlnða0Þ � ZtÞ. Therefore the slope of lnðaðtÞÞ should describe the exponential decay rate for the
function. In the transient response of the structural model, the amplitude of the response is identified as the
local maximum of the displacement at the free end of the chain, that is Ai ¼ arðtiÞ, when a0rðtiÞ ¼ 0. The slope,
and hence the exponential decay rate, is then calculated based on a central difference approximation

Zi ¼
lnðAiþ1Þ � lnðAi�1Þ

tiþ1 � ti�1
. (31)

As seen in Fig. 18, the exponential decay rate as calculated in the above manner is not constant, as would be
expected for a linear structure. Instead, as illustrated in Fig. 18a, as the amplitude Ai decreases the identified
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value of Zi decreases as well. In addition, in Fig. 18b, the exponential decay rate is shown against the
amplitude itself, so that the dependence of the dissipation on the amplitude is clear.

4.2. Harmonic excitation

The forced response of the system is generated with an excitation of the form

F ðtÞ ¼

d
t

10ð2p=oÞ
2�

t
10ð2p=oÞ

� �� �
sinðotÞ; 0pto10

2p
o

� �
;

d sinðotÞ; tp10
2;p
o

� �
;

8>>><
>>>:

(32)

as shown in Fig. 19. The forcing amplitude grows quadratically in time for 10 periods, leading to a stationary
harmonic forcing with (nondimensional) frequency o. In addition, the rod is initially stationary and
undeformed. The steady-state amplitude of the response Ass is determined by simulating the structural system
for a minimum of 20 forcing cycles, and then estimating the steady-state amplitude of the response from the
response based on Ai.
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For nonconservative linear structural systems the dissipation per cycle induced by the damping scales
quadratically with the external forcing amplitude. In contrast, the dissipation per cycle from the structural
interface is shown in Fig. 20. The frequency of the external forcing is chosen to be o ¼ p=8, which is
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one-quarter of the frequency associated with the fundamental mode of a continuum rod. Below d�0:0450, the
response dissipates no energy, as the loading on the interface is unable to overcome the discretized
representation of the frictional contact. Based on the response for which D410�6, above the effects of the
discretization, the dissipation follows a power-law scaling with a fitted exponent of m�2:72, shown as the thin
dashed line in the figure. Notice that the observed dissipation slope for the structure differs from the slope of
three observed when considering the interface alone (cf., Fig. 5)—the dissipation induced in the structure
depends not only on the properties of the interface but the dynamics of the structure as well [16]. In addition,
as shown in Fig. 21, when the excitation frequency o is varied with fixed forcing amplitude, the amplitude of
the response Ass shows the effect of the induced damping over the range of excitation frequencies.

5. Conclusions

An interface model has been presented that naturally allows for both energy dissipation and elasticity in the
joint, and has been shown to capture the structural damping that arises from microslip. The model can be
decomposed into a series-series Iwan system, together with an elastic chain subject to tangential loads. Based
on this novel decomposition, a reduced-order model was formulated that exhibits significant computational
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advantages, yet nonetheless captures the energy dissipation within the interface. The direct investigation of the
energy dissipation in the model produced dissipation scalings that are consistent with experimentally observed
results. Further, the model was incorporated into a larger structural system. Of course, implementation of this
or any reduced-order model will require some experimental tests for validation and identification of the
parameters. However, the parameters required by this model are physically motivated. Future directions will
include frictional intensities that vary in both time and space and well as the implementation of such models
into the response of more complicated structures.
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